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FINITE ELEMENT SIMULATION OF DIP COATING, 
I: NEWTONIAN FLUIDS 

P. TANGUY*$, M. FORTIN? AND L. CHOPLIN' 

Uniuersite' Laval, Cite' Universitaire Oue'bec, Canada, G1 K 7P4 

SUMMARY 

A finite element simulation of the dip coating process based on a discretization of the continuum with 
discontinuous pressure elements is presented. The algorithm computes the flow field from natural 
boundary conditions while an extra condition provided by the existence of free surface is employed to 
displace the meniscus location towards the actual position. The process is iterative and uses a 
pseudo-time stepping technique coupled to a cubic spline fitting of the free surface. Numerical 
predictions exhibit good agreement with experimental data for Newtonian fluids in the case of flat plate 
dip coating as well as in the case of wire dip coating. 
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1. INTRODUCTION 

This paper presents a simulation of a flow in which surface tension, viscosity and gravity play 
an important role. We consider the case when a web (flat plate or cylinder) is withdrawn 
vertically at a constant velocity from a liquid bath (Figure 1). During the process, a fluid 
layer is drawn along the moving web and a meniscus is formed at the interface between the 
air, the sheet and the liquid bath surface. The shape of the meniscus results from the 
equilibrium between viscous forces and surface tension forces. The operation described 
above is known as dip coating and is of considerable interest in many industries where it 
intervenes as a unit operation of more complex manufacturing processes. 

From a practical point of view, the knowledge of the eventual coating thickness at the 
upper part of the meniscus and to a lesser extent the knowledge of the whole free surface 
location are required. They depend on the fluid properties as well as on the speed of 
withdrawal and can be predicted with a precise simulation of the flow. 

Historically, the predictions of the free surface shape and of the eventual coating thickness 
were performed first assuming a Newtonian behaviour of the Auid. The first significant 
contribution was that of Landau and Levich' who derived from a simplification of the 
momentum equation, a differential equation for the thickness as a function of the height 
above the constant surface level. Since this pioneering work, the dip coating process has been 
extensively studied on both theoretical and experimental aspects, contributing thereby to 
improve Landau and Levich's approach. Because the majority of the fluids of interest for dip 
coating are essentially non-Newtonian in character, numerous attempts have been made in 
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meniscus 
region 

Figure 1. Dip coating process 

order to adapt the Newtonian treatment to the non-Newtonian case. The rheological 
behaviour of these fluids is however quite complex and introduces additional non-linearities, 
resulting in very poor agreement with experiment. If we take into account the non-linearities 
inherent in the convective terms of the momentum equation and to the normal stress 
equilibrium condition on the free surface, the mathematical complexity of the problem 
becomes formidable. 

That is the principal reason why most researchers have derived empirical correlations from 
experimental data and why little attention has been given to the purely numerical solution, 
except in the case of Newtonian fluids. Interesting reviews have been written by Middleman2 
and Higgins et aL3 

Finite difference methods were used by Lee and Tallmadge4 and Marques et aL5 They 
used stream function-vorticity implicit schemes, which are very difficult to adapt to complex 
non-Newtonian behaviour. This is not the case for the Eulerian formulation with the finite 
element method. Moreover finite element methods are more convenient to fit irregular 
boundaries, as, for example, free surfaces. 

In the present work, we used the finite element method to  model the dip coating process 
for Newtonian and non-Newtonian fluids. Part I describes the finite element approximation 
and the method used for the computation of the free boundary. Numerical results for 
Newtonian flows are presented and compared with experimental data. Part I1 will deal with 
non-Newtonian fluids and present a widely applicable algorithm for the solution of such 
flows. 

2. PROBLEM, DEFINITIONS AND NOTATIONS 

We consider the equations of viscous incompressible flow: 

p(U+ u . VU) +v . T = pf 

v . u = o  
Here u denotes the velocity of the fluid, p its density and T the stress tensor. The body force f 
is, in practice, of the form f = (0, g}, where g is the gravitational acceleration constant. This 
study will be restricted to bidimensional or axisymmetric flows, in which u has only two 
components. We shall also consider steady flows in which u = &/at = 0. 
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The stress tensor T is written as 

T = T D + p s ;  &:=o 
I 

Classically, the deviatoric T~ is related through a constitutive equation to the rate-of-strain 
tensor +(u), that is: 

TD = cp (Y(u)) (2b) 
For the dip coating process, the tensor y can be written in Cartesian co-ordinates ( x ,  y) as 
follows: 

0 0 

and in axisymmetrical co-ordinates: 

au 
ar 

0 

U - 
t 

0 

In equations (2c) and (2d), u and v denote, respectively, the components of the vector u in 
the x (or r )  and y (or z) directions. 

We shall, as mentioned previously, restrict the present part to the Newtonian case, for 
which: 

ID = 2p+(u) 124 

Here, p denotes the viscosity of the fluid. 
A complete definition of the problem requires boundary conditions; they are of Dirichlet's 

type on the known parts of the boundary (Figure 2). On the free boundary rF, let n be the 
outward oriented normal and t the tangential vector as shown by Figure 3. Let us define on 
rF the normal and tangential stress components: 

T,,, = TijQnj ; Tnt = TijQt, ( 3 4  
i,i i,i 

We must then have on rF, 
U 

T", =-- -Po,  for plane flows 
R1 
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u=o 
v = v o  

Z 

0 

K -  [ u=v.o 

Figure 2. Boundary conditions for wire dip coating (at equilibrium) 

Conditions (3b) and (3a), where w represents the surface tension of the fluid, R ,  and R2 the 
radii of curvature and po the atmospheric pressure, express the equilibrium of viscous forces 
with surface tension forces. In the axisyinmetric case (see Figure 3)  we must take into 
account two radii of curvature with opposite effects, whereas in the other case considered 
here, only one radius of curvature intervenes. 

On the free surface, we must also have, 

(4) u, = u. n = 0 

/ 
I 

Figure 3. Free surface coordinate system 
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which expresses that the flow is tangential to rF. If the free boundary I'F were known, either 
(3b) and (3a) or (3b) and (4) would be consistent sets of boundary conditions. The third 
condition must be used to locate rF. We first consider the case of a fixed known boundary rF. 

To give a variational formulation to this problem, we define [6]: 

( 5 4  .'u(u):+(v) dx = 2p 1 +ii(u>~ij(v) dx I i,j 

b(u, u, v) = (u . Vu) . v dx b 
c ( p , v ) = b  pV.vdx (54 

We now consider 
simplicity: 

being known, the weak problem written for the plane flow case for 

a(u, 6u) + b(u, u, 6u) - c(p,  6u) = 

+1. (:- 
c(6p, u) = 0, V6p E 2 (6b) 

The spaces W and 2 are the spaces of test velocities and test pressure respectively. The test 
functions of Y vanish on the boundaries where Dirichlet's conditions are imposed. 

Integrating (5a) by parts and using the result in (6a) shows that boundary conditions (3b) 
and (3d) (or (3c) and (3d) in the axisymmetric case) are natural boundary conditions in this 
formulation. 

Remark I 

The natural boundary conditions would not be the same if jnVu:Vvdx has been used 
instead of a(u,v) to represent the viscous terms in the equations. Even if this form is 
equivalent in the case of Dirichlet's boundary conditions, it does not yield, when integrated 
by parts, the same natural boundary conditions. Using the correct expression is very 
important for free surface problems if one wants to  obtain the stress balance condition. 

Remark 2 

If we neglect the inertial terms u . Vu, (6a) and (6b) is equivalent to a saddle point problem: 

(7) 

We thus have a mixed formulation of our problem and this point will have implications on 
the choice of the discretization. 

inf sup I I+(v)12 dx - h pV . v dx - I, f . v dx - 
v c l r p s 9  p 

(:-p,,)v. n dT,} 

3. FINITE ELEMENT APPROXIMATION 

3.1. Description of the method 

It is well known that the approximation of incompressible materials by finite elements 
requires special care, and that one has to satisfy the celebrated Brezzi-Babuska condition7 
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between the approximations of velocity and pressure. In the past the biquadratic velocity- 
bilinear (continuous) pressure element, denoted Qg4, has been widely used in numerous 
bidimensional flow problems. The present state-of-the-art however clearly implies, in our 
view, that the biquadratic velocity-linear (discontinuous) pressure element, which we denote 
QQ3, is the best choice of a quadrilateral element."' 

This element is, moreover, compatible with the enriched-quadratic velocity-linear pres- 
sure triangular element, denoted TT3, of Crouzeix and Raviart." This element is nothing but 
the standard quadratic triangular element to which a bubble function (hlh2h3 in barycentric 
co-ordinates) has been added for the sake of satisfying the compatibility condition. The 
degrees of freedom of these elements are presented on Figure 4. 

Simultaneous use of quadrilaterals and triangles allows more flexibility in mesh generation 
(see Figures 5(a) and 5(b)). It can be shown that both elements provide a second-order 
approximation of the equations of change at least in ideal cases. Using a discontinuous linear 
pressure means that on each element, the divergence-free condition is approximated by a set 
of three linear constraints. In our program, pressure has been defined by an expression of the 
form (ao + botl + cot2) on a reference element. The constant term is the value of the pressure 
at the barycentre whereas the two extra terms have no direct sense on the current element, 
even if they can be used to compute pressure values at any point. 

Denoting the vector of nodal values of u by U and the nodal pressures (as defined above) 
by p ,  we have from (6a) and (6b) a set of non-linear equations to salve. Setting: 

(F,  V) = I f . v dx - (k- po)v. n drF, 
n 

0 velocity 
x pressure 
o goussion node 

Figure 4. Elements T,3 and Q,, 
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Figure 5. (a) Finite element mesh for dip coating. (b) Details of finite element mesh in the meniscus region 

we obtain 
AU+ B(U)U+ cTp = F 

c u = o  
The matrix C can be decomposed into (18x3) (for quadrilaterals) or (14x3) (for triangles) 
matrices on each element. 

To solve this discrete system, we use an exact penalty method in the sense of Engelman et 
al.' (see also Bercovier and Engelman," Fortin'). The penalty method is completely compati- 
ble with the Qg3 element in the sense of Malkus and Hughes" We set: 

(10) 
1 
A 

P = - s-'cu 

where S is any non-singular matrix and A the parameter of penalization. In practice, we used 
the identity matrix weighted by the area of the element in order to get a good scaling. We 
thus obtain: 

AUA +B(UA)UA +' CTS-'CU* =F (11) A 

This non-linear system can be solved by Newton's method but this requires factoring (and 
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assembling) a new matrix at each iteration. In the problem we consider which involves very 
viscous fluids, inertial terms can often be neglected and the problem then becomes linear. 

The error introduced by penalization can be completely removed using a very simple 
iterative scheme (for a complete justification, see Reference 13). The idea is to write (10) as 
an updating of the pressure: 

(12) 
pn+l= pn +- 1 s-lcun+l 

A 
along with 

(13) 
1 
h 

AU,"+'+B(Uj:'l)U,"f'+ CTP" +- CTS-'CU~'' = F  

This process is shown to converge by Fortin and G10winski.l~ In fact, it does so in one 
iteration if X is small enough. In cases where a too small value could cause conditioning 
problems, the iterative process ensures accurate values in all cases. This is a very simple 
example of mixing penalty and duality technique, an idea that will be basic to our treatment 
of non-Newtonian fluid flows. 

3.2, Numerical test 

Before presenting the computation of free boundaries and results on the dip coating 
problem, we would like to p,resent a comparison we made between the Qg3 and Qg4 

elements. Even if the real significance of this test is somewhat limited, we consider it may be 
worth being presented rapidly. 

The test is on a recirculating flow inside an annulus, as shown in Figure 6 .  This can be seen 
as the popular driven cavity problem with axisymmetric co-ordinates and has been chosen 
because of its similarities with the dip coating process. If the annulus is very long, an 
analytical solution l 5  for the velocity profile can be derived, neglecting end effects: 

(( 1 - 5") [ 1 + $ In k ]  + (1 - k2)  In 
v=  vo 

1 - k 2  + (1 + k 2 )  In k 
where 

r r0 [=-  and k = -  
R R '  

This is of course in fact a linear solution. In the numerical test we used a length-radius ratio 
of 10 in order to eliminate end effects. The grid and boundary conditions are shown in 
Figure 7. The results are presented in Figure 8 and Table I. Both computations show a good 
agreement with the analytical profile. The Q9, element however shows a more regular 
distribution of errors and better results for the larger values of the velocity. 

4. DIP COATING SIMULATION 

4.1. The free boundary problem 

Finding the shape of the free meniscus is an essential part of the dip coating problem. 
Although other approaches are possible,16 the classical way of finding a free surface is to use, 
on some initial estimate of the surface, a set of consistent boundary conditions, to compute a 
flow using these conditions and to update the surface using the extra boundary condition. 
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moving rod 

(velocity Vo 1 f 

,cylinder 

velocity profile 
neglecting end effects 

Figure 6. Recirculating flow into an annulus 

Many possibilities exist to  devise such a procedure. We chose to  solve problems involving the 
natural boundary conditions ((3b) or (3c) and (3d)) for the computation of the flow. The 
reason was that these conditions require no special treatment and are included in the 
variational formulation. Moreover it is easy to check if the last condition, u . n = 0 on r F ,  is 
satisfied while checking directly (3b) for instance, requires the stress values on r F .  These 
values are not readily available, with sufficient precision, in the discretization we used. 

FINITE ELEMENT OR10 and BOUNOARY CONDITIONS 

moving rod wall Y- 

U.V.0 U.VnO 

', u 
CIRCULATING FLOW IN AN ANNULUS 

Figure 7.  Grid and boundary conditions for recirculating flow 
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- onolyticol solution 
Q94 
093 

Figure 8. Velocity profiles in the annulus, far from the edges: comparison between numerical and analytical 
solutions 

Even this choice of boundary conditions does not lead to  a unique updating procedure for 
the free boundary. A standard p r ~ c e d u r e ' ~ ' ~ ~  is to compute a new boundary by solving a 
discrete version of the differential equation for (x, y) E r,: 

-=- dy > Y(xo)= Yo dx u 

where (xo, yo) is some known point of the boundary. 
Equation (15) expresses that rF should be parallel to the flow. This method seems to work 

properly for free-jet flows but cannot be applied in our case for which a stagnation point 
exists on the free surface. One would then have to  integrate (15) through a singular point. 
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Table I. Velocity profile for a recirculating flow into an annulus: compari- 
son between numerical predictions with Qg4 and Qg3 elements and analyti- 

cal solution 

Vl vo Vl vo Vl vo 
rl R analytical Qg, element Q9, element 

0.091 1 1 1 
0.16675 0.59167 0.60796 (+0*01629) 0.59823 (+O-00654) 
0.2425 0.35193 0.34489 (-0*00704) 0.35842 (+0.00649) 
0.31825 0.19136 0.20248 (+0*01112) 0.19914 (+0*00778) 
0.394 0.07912 0.08233 (+0.00321) 0.08663 (+0.00751) 
0.46975 0.00081 0.00888 (+0*00807) 0.00790 (+0*00709) 
0.50455 -0.05142 -0.04569 (+0.00573) -0.04470 (+0.00672) 
0.62125 -0-08238 -0.07594 (i-0.00644) -0.07613 (+0.00625) 
0.697 -0.09518 -0*09006 (+0.00512) -0.08979 (+0*00539) 
0.77275 -0.09197 -0.08762 (+0.00435) -0.08767 (+0.00430) 
0.8485 -0.07432 -0.07122 (+0.00310) -0.07128 (+0.00304) 
0.92425 -0.04337 -0.04178 (+0.00159) -0.04176 (+0.00161) 
1 0 0 0 

4.2. Description of the method 

We used a method that seems less classical even if it is suggested by Zienkiewicz and 
Godbole.” It is an imitation of the actual movement of the free surface in a time-dependent 
computation. We say that we make pseudo-time stepping. Let xk be a point of r, at step k 
and n . n  the value of the normal velocity at this point. We set: 

(16) Xk+l- k - x  +a(u.n)n 

where (Y is a dummy time step. We thus move the point normally to rF at a distance 
proportional to u . n. Choosing the value of 01 will be discussed below. In practice only the 
vertices of the elements were moved by (16). A cubic spline is first fitted to the points to be 
moved. This enables us to compute a good value of the normal n (it also provides a 
convenient way of computing curvature). The vertices are then moved according to (16) and 
a new spline is used to compute the midpoints of the element sides which we need to 
recompute the flow. The boundary of the higher element (cf. Figure 9) was considered 
vertical and was moved in unison with the last point of the spline. 

Remark 3 

The spline was parameterized by the arc length s of the piecewise linear fit to the same 
points. We thus get two cubic splines x(s), y ( s ) .  This arc length s is close enough to the exact 
arc length to ensure that the fitted spline was almost of minimum quadrature in the usual 
sense of cubic splines. We also tried using a quadratic spline that seemed more adapted to 
our isoparametric element. This proved much less stable in practical computation and was 
discarded. 

The boundary conditions of the outgoing flow were computed assuming a pure shear Bow. 
This implies that our mesh must extend high enough to make this assumption realistic. We 
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- - - - - - - - _-  upper point of 
the cubic spline 

lower point of 
the cubic spline 

I 
I 

Figure 9. Cubic spline fitting of the free surface shape 

thus have, h denoting the thickness, 

v,,,= 
in the axisymmetric case or 

(17b) g 
2 

At each step, a new value of h is computed as described above. The inflow V,, is adjusted 

V,,, = Vo + - X' - ghx, 

in the case of plane flow. 

in order to match (17a) or (17b) so that the total mass be conserved. 

Remark 4 

In the pure shear flow, one has: 

U 
p = po + - 

R2 
(see Figure 3) 

Thus for a plane flow we have p = pa whereas for an axisymmetric flow we have p >pa. 

The determination of a good value for a in (16) was done experimentally first. It is also 
possible to use a criterion for the choice of a. 

For a given boundary rF, and the associated flow, let us define: 

Minimizing J(rF) is equivalent to solving our problem.2n Given an initial choice a. of a, we 
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recompute J(r,) by moving the boundary by a and 2a0 from the same initial position. We 
thus obtain three points (a  = 0, a. and 2a0) and a parabolic fit gives us the best local value of 
a. 

4.3. Results and discussion 

We have calculated the free surface shape and the eventual thickness for Newtonian fluids 
in three cases. 

The first case corresponds to flat plate coating, whereas the others correspond to wire 
coating. In order to compare the numerical calculation to experimental results, we have 
taken from the literature2’ data for flat plate coating and for the wire coating, and we have 
designed an experimental device whose description can be found elsewhere, together with 
experimental procedure .22 

For all cases, the physical properties of the fluids used and the dimensionless groups 
corresponding to the dynamic of the dip coating process are presented in Tables 11 and 111. 
Figures 10-12 show the comparison between the experimental meniscus profile, and that 
obtained by numerical calculations. 

In Table IV, we present the numerically predicted eventual thickness value as compared 
with the measured thickness. In all cases, the agreement is fairly good. 

The number of iterations necessary to obtain a stable free surface location strongly 
depends on the quality of the initial guess, particularly its shape. We have shown in Figures 
10 and 11 its location with respect to the numerical and experimental results. With these 
initial guesses, computations never required more than 15 free surface iterations. The 
criterion of convergence we used for the determination of this free surface is defined by 
comparing the magnitude of the normal velocity, u,,, at the free surface nodes to the 
withdrawal velocity, V,, by: 

which is equivalent by (16) to a classical convergence criterion on the nodes displacement. 

Table 11. Physical properties of the fluids at 25°C and atmos- 
pheric pressure 

~~ ~~ 

p[ = ]Pa. s p[ = ]kg/m3 CT[ = ]N/m. 

Lee and Tallmadge2’ 1.31 885 0.0327 
Vitrea oil 2.9 910 0.0359 

~~~ - ~~ 

Table 111. Dimensionless groups for dip coating experiments 

h e x p  V O P  ca ~ cL - vo R e = -  

Lee and Tallmadge’’ 0.032 1-33 Flat plate 
(V, = 3-31 cm/s) coating 

(V, = 2.41 cm/s) Wire 

(Vo = 7.47 cmls) 

P U 

Vitrea oil 0.0094 1.95 

Vitrea oil 0.045 6.03 coating 
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V I T R E A  

V E L O C I T Y :  2 . 4 1 C M / S  
. 

. 

. 
0 

0 

* .  
0 

*. 

* 

TKTO(MSS IN m 
Figure 10. Wire meniscus profile for vitrea oil at V, = 2.41 cmls: * initial guess; 0 numerical prediction; 0 

experimental measurement 

In Figure 13, a typical flow field is presented; it corresponds to the wire dip coating case 
(V, = 2.41 cm/s). This result shows no surprising feature and can be compared with those of 
Lee and Tallmadge.21 The observation of the flow lines clearly shows the existence of a 
stagnation point on the free surface. This point delimits two areas in which the fluid flows in 
opposite directions. The prediction of the location of the stagnation point by our finite 
element algorithm agrees with previous results. Such a point is located approximately at a 
meniscus thickness equal to 2.5 times the eventual coating thickness (see the arrows in 
Figures 10-12). 

Another result of interest is that observed on the free surface between the initial guess and 
the final location. The displacement of the free surface between two consecutive iterations 
shows a propagation of a swell (Figure 14), from the free surface constant level to the upper 
part of the meniscus. This phenomenon is similar to that observed when the web is suddenly 
accelerated and is due to the time-stepping technique which simulates a time-dependent 
situation. 

Finally, we have tested the influence of the inertial terms of the equation of motion on the 
computed results. We have noticed that these convective terms do  not significantly influence 
the prediction of the eventual coating thickness in the upper part of the meniscus; neverthe- 
less, the eventual shape of the lower part of the meniscus is affected and appears to be more 
narrow, in contradiction to  experimental results. 

If the interest is to predict the eventual thickness only, this omission will be very useful 
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26 ~ V I T R E A  18- 
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5. CONCLUSIONS 

We have shown in this first part that the dip coating process can be successfully simulated by 
Galerkin method coupled to a discontinuous pressure element discretization of the con- 

Table IV. Comparison between numerically predicted eventual 
thickness and experimental valve 

h[ = lmm 
numerical experimental 

h[ = ]mm 

Lee and Tallmadge” 1.43 1-43 Flat plate 
(V, = 3.31 cm/s) coating 

Vitrea oil 1-28 1.24 
(V, = 2.41 cmls) Wire 

Vitrea oil 1-85 1.93 coating 
(V, = 7.47 cmls) 
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Figure 13. Typical propagation of a free surface swell during the iterative process 

I ‘I I I l  / _ ‘ ,  ‘ .  

Figure 14. Velocity field in the meniscus region in the case of Figure 10 
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tinuum. This method enables us to correctly predict the complex axisymmetric flow situation 
which involves a free surface and a stagnation point. 

Agreement of our numerical predictions with already published results and with direct 
measurements is noteworthy in Newtonian case. 

The second part of this work will deal with non-Newtonian modelling of this dip coating 
process, with peculiar attention to the treatment of non-linearities introduced by complex 
rheological behaviour. 
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